# Euclid's Method

Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system.

## Procedure

The Euclidean algorithm proceeds in a series of steps such that the output of each step is used as an input for the next one. Let k be an integer that counts the steps of the algorithm, starting with zero. Thus, the initial step corresponds to k = 0, the next step corresponds to k = 1, and so on.

Each step begins with two nonnegative remainders rk−1 and rk−2. Since the algorithm ensures that the remainders decrease steadily with every step, rk−1 is less than its predecessor rk−2. The goal of the kth step is to find a quotient qk and remainder rk that satisfy the equation and that have rk < rk−1. In other words, multiples of the smaller number rk−1 are subtracted from the larger number rk−2 until the remainder rk is smaller than rk−1.

In the initial step (k = 0), the remainders r−2 and r−1 equal a and b, the numbers for which the GCD is sought. In the next step (k = 1), the remainders equal b and the remainder r0 of the initial step, and so on. Thus, the algorithm can be written as a sequence of equations.

If a is smaller than b, the first step of the algorithm swaps the numbers. For example, if a < b, the initial quotient q0 equals zero, and the remainder r0 is a. Thus, rk is smaller than its predecessor rk−1 for all k ≥ 0.

Since the remainders decrease with every step but can never be negative, a remainder rN must eventually equal zero, at which point the algorithm stops. The final nonzero remainder rN−1 is the greatest common divisor of a and b. The number N cannot be infinite because there are only a finite number of nonnegative integers between the initial remainder r0 and zero.

## Proof of validity

The validity of the Euclidean algorithm can be proven by a two-step argument. In the first step, the final nonzero remainder rN−1 is shown to divide both a and b. Since it is a common divisor, it must be less than or equal to the greatest common divisor g. In the second step, it is shown that any common divisor of a and b, including g, must divide rN−1; therefore, g must be less than or equal to rN−1. These two conclusions are inconsistent unless

rN−1 = g.

To demonstrate that rN−1 divides both a and b (the first step), rN−1 divides its predecessor rN−2

rN−2 = qN rN−1

since the final remainder rN is zero. rN−1 also divides its next predecessor rN−3

rN−3 = qN−1 rN−2 + rN−1

because it divides both terms on the right-hand side of the equation. Iterating the same argument, rN−1 divides all the preceding remainders, including a and b. None of the preceding remainders rN−2, rN−3, etc. divide a and b, since they leave a remainder. Since rN−1 is a common divisor of a and b, rN−1 ≤ g.

In the second step, any natural number c that divides both a and b (in other words, any common divisor of a and b) divides the remainders rk. By definition, a and b can be written as multiples of c: a = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r0, since r0 = a − q0b = mc − q0nc = (m − q0n)c. An analogous argument shows that c also divides the subsequent remainders r1, r2, etc. Therefore, the greatest common divisor g must divide rN−1, which implies that g ≤ rN−1. Since the first part of the argument showed the reverse (rN−1 ≤ g), it follows that g = rN−1. Thus, g is the greatest common divisor of all the succeeding pairs:[15][16]

g = gcd(a, b) = gcd(b, r0) = gcd(r0, r1) = … = gcd(rN−2, rN−1) = rN−1.

## DEMONSTRATION:

For illustration, the Euclidean algorithm can be used to find the greatest common divisor of a = 1071 and b = 462. To begin, multiples of 462 are subtracted from 1071 until the remainder is less than 462. Two such multiples can be subtracted (q0 = 2), leaving a remainder of 147:

1071 = 2 × 462 + 147.

Then multiples of 147 are subtracted from 462 until the remainder is less than 147. Three multiples can be subtracted (q1 = 3), leaving a remainder of 21:

462 = 3 × 147 + 21.

Then multiples of 21 are subtracted from 147 until the remainder is less than 21. Seven multiples can be subtracted (q2 = 7), leaving no remainder:

147 = 7 × 21 + 0.

Since the last remainder is zero, the algorithm ends with 21 as the greatest common divisor of 1071 and 462. This agrees with the gcd(1071, 462) found by prime factorization above. In tabular form, the steps are

Step k Equation Quotient and remainder
0 1071 = q0 462 + r0 q0 = 2 and r0 = 147
1 462 = q1 147 + r1 q1 = 3 and r1 = 21
2 147 = q2 21 + r2 q2 = 7 and r2 = 0; algorithm ends